
SPUR Memory System Architecture

DavidA. Wood
Susan J. Eggers
Garth Gibson

Computer Science Division
Electrical Engineering and Computer Sciences Department

University of California
Berkeley, California 94720

Version 2.1: 117/88

ABSTRACT

This document describes the memory system architecture of the SPUR workstation. SPUR
is a bus-based multiprocessor, with caches to reduce each processor's bandwidth requirement. A
hardware cache coherency protocol maintains a consistent image of memory across all the
caches. A novel address translation scheme eliminates the need for translation buffers.

This document is intended as a reference for system and diagnostic programmers. It
describes the cache coherency protocol, address translation algorithm, and exception handling
mechanisms in detail.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
07 JAN 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
SPUR Memory System Architecture

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This document describes the memory system architecture of the SPUR workstation. SPUR is a bus-based
multiprocessor, with caches to reduce each processor’s bandwidth requirement. A hardware cache
coherency protocol maintains a consistent image of memory across all the caches. A novel address
translation scheme eliminates the need for translation buffers. This document is intended as a reference for
system and diagnostic programmers. It describes the cache coherency protocol, address translation
algorithm, and exception handling mechanisms in detail.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

50

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Acknowledgements

Many people have contributed to the design of SPUR. It is not possible to single out the
contributions of every member of the project over its three year history. We would especially
like to thank Deog-Kyoon Jeong and Walter Beach for their work on the cache controller chip
implementation, and Ken Lutz for his work on the processor board. We would also like to thank
Randy Katz, Corinna Lee, and Doug Johnson for their helpful comments on earlier drafts of this
report.

This research was funded by DARPA contract number N00039-85-C-0269 as part of the
SPUR research project. Additional funding came from the IBM Pre-Doctoral Fellowship pro­
gram, and the California MICRO program (in conjunction with Texas Instruments, Xerox,
Honeywell, and Phillips!Signetics).

Table of Contents

1:

1.1:
1.2:
1.3:
1.4:
1.5:
1.6:
2:
2.1:
2.2:
2.3:
2.3.1:
2.3.2:
3:
3.1:
3.2:

Introduction .. .
Virtual Address Cache .. .
Virtual Memory .. .
Cache Coherency ... ~
SPURBus .. .
Memory Access Instructions .. .
Address Spaces
Virtual Memory Support .. .
Virtual Address Cache Accesses .. .
Translation Algorithm .. .
Pagetable Entry Format .. .
Protection .. .
Reference and Dirty Bits .. .
Physical Address Space .. .
EPROM .. .
UART

1

1
1

2
2
3
3
5

6

7

9
10
11

12
12
12

3.2.1: Mode Registers (MR1A, MR2A, MR1B, MR2B) 12
3.2.2: Baud Rate Register (CSR) ... 14
3.2.3: Command Register (CR) ... 15
3.2.4: Status Register (SR) ... 15
3.2.5: Interrupt Status Register (ISR) .. 16
3.2.6: Interrupt Mask Register (IMR) .. 16
3.2.7: Interrupt Vector Register (IVR) ... 16
3.2.8: Input Port Change Register (WCR) ... 16

3.2.9:
3.2.10:
3.3:
3.4:
3.4.1:
3.4.2:

3.4.3:
3.5:

Auxiliary Control Register (ACR)
Output Port Configuration Register (OPCR) .. .
Status LEDs and Seven Segment Displays
Cache Rams .. .
Cache Data Rams .. .
State and Tag Rams .. .
Physical Address Tags .. .
SpurBus Space .. .

4: Control Space
4.1: Address Translation Registers .. .
4.1.1: GSN Registers .. .
4.1.2: PTEV A Register
4.1.3: RPTEVA Register .. .
4.1.4: RPTM Registers
4.1.5: GV A Register
4.2: Global Register

4.3: System Timers .. .

17
17
17
18
19
19
19
20
21
22
22
23
23
23
23
23
24

4.3.1:
4.3.2:
4.4:
4.5:
4.6:
4.7:
5:
5.1:
5.2:
5.3:
5.3.1:
5.3.2:
6:
6.1:
6.2:
6.3:
6.4:

64-bit Timer .. .
Interval Timers
Mode Register
Slot Id Register
Exception Status Registers
Performance Counters .. .
Errors, Faults, Interrupts, and System Reset .. .
Interrupts
Faults .. .
Errors .. .
Recovering from Inconsistent Cache Errors
Atomic Operations and Error
Cache Coherency Protocol
Functional Overview .. .
The Coherency States
The Coherency Protocol Bus Operations
The Protocol from the Point of View of the Processor

6.5: The Protocol from the Point of View of the Snoop
6.6: Atomic Operations .. .
6.7: Coherency Optimization
7: Virtual Cache Algorithms
7.1: Restricting Virtual Address Synonyms .. .
7.2: 1/0 Considerations .. .
7.3: Modifying Pagetable Entries .. .
7.3.1: PTEPagePhysicalAddress and PTEPageValid
7 .3.2: PTEPageProtection
7.3.3: PTEPageCacheable
7.3.4: PTEPageReferenced
7.3.5: PTEPageDirty
7.4:
8:

Re-using Segments
References

ii

24
24
24
25
25
25
29
29
30
31
31
32
33

33
33
33

34
35
35
36
38
38
38
39

39
40
40
40
41
41
42

List of Tables

2.1: PageT able Entry Format 10

2.2: Protection Modes 11

3.1: DUART Register Addressing.. 14

3.2: Command Register (CR) ... 15

3.3: Status Register (SR) ... 15

3.4: Interrupt Status Register (ISR) .. 16

3.5: Auxiliary Control Register (ACR) .. 17

3.6: Display Register .. 18

3.7: Seven Segment Display Digit Specifier .. 18

4.1: SubCacheOp Description .. 21

4.2: Cache Controller Register Addresses .. 22

4.3: Bit Assignments in Mode Register .. 24

4.4: Performance Counter Modes 25

4.5: Counters by Mode 26

4.6: Description of Events Counted .. 27

4. 7: Formulas for Typical Memory System Metrics 28

5.1: Interrupt Status/Mask Register Assignments .. 30

5.2: Fault Bits in the FEStatus Register .. 31

5.3: Error Bits in the FEStatus Register ... 32

6.1: Cache State Semantics ... 33

6.2: Bus Operations .. 34

iii

List of Figures

2.1:

2.2:

2.3:

2.4:

3.1:

6.1:

6.2:

7.1:
7.2:

Self-referential Mapping of Pagetables .. .

Formation of Global Virtual Address

Translation from Virtual to Physical Addresses

Pagetable Entry (PTE) Format

SpurBus Physical Address Space Organization

Transition Diagram of the Berkeley Ownership Protocol

Locking Sequence

Selective Cache Flush Pseudo-Code

Segment Cache Flush Pseudo-Code

iv

6

7

8

9

13

34

36

39

42

1. Introduction

This document describes the memory system architecture of the SPUR workstation. SPUR
is a multiprocessor workstation based around a common bus and shared main memory [Hill86].
Caches are used to reduce each processor's bandwidth demand on the bus, and to reduce the aver­
age memory access time. A distributed cache coherency protocol, called Berkeley Ownership
[Katz85], maintains consistency across all the caches in the system. A novel address translation
scheme, called In-Cache Address Translation [Wood86], provides a single shared virtual address
space to all processors.

Each SPUR processor contains 3 functional modules, a central processing unit (CPU), a
floating point coprocessor (FPU), and a Cache Controller (CC). In the SPUR prototype, each of
these is implemented as a single CMOS VLSI chip. Each processor is a single board, containing
the custom chips, high-speed static RAMs, and bus interface logic.

This document is intended as a reference for system and diagnostic programmers. The
cache coherency protocol, address translation algorithm, and exception handling mechanisms are
all described in detail. The rationale behind the important design decisions is presented.

1.1. Virtual Address Cache

An unusual feature of SPUR's memory architecture is its virtual address cache. The cache
associates virtual address tags, rather than physical address tags, with blocks of data. This allows
cache hits to proceed without address translation. In contrast, physical address caches require
that address translation be done before or in parallel with the tag lookup. For this reason the
cycle time can be shorter with a virtual address cache, improving system performance.

In addition to the cycle time advantage, virtual address caches allow address translation to
be done more slowly, since translation need not be done on every cache access. SPUR exploits
this freedom by eliminating the traditional translation buffer and uses In-Cache Address Transla­
tion instead (see Section 2).

Virtual address caches are not commonly used because they can suffer from the so called
synonym problem. A virtual address synonym exists when two virtual addresses map to the same
physical address. If the virtual address is used to index the cache, the same datum could reside in
two (or more) different cache blocks for certain cache configurations. Inconsistencies can arise if
one copy is modified and the other is not. SPUR avoids these problems by disallowing synonyms
(enforced by the operating system). SPUR provides a global virtual address space, shared by all
processes. Thus, two processes must access a shared datum using the same global virtual address.

1.2. Virtual Memory

The mapping from virtual to physical addresses is maintained in a structure called a page
table. This table resides at a well-known location in the virtual address space; during address
translation, we locate the appropriate page table entry (PTE) by indexing into the table using the
virtual page number (the high-order address bits). Computers with physical address caches use a
special-purpose cache for PTEs, called the translation look-aside buffer (TLB), to reduce address
translation time. Because of SPUR's virtual address cache, address translation is necessary only
on cache misses. Rather than having a separate TLB, the cache acts as both a TLB and a data
cache. The details of the algorithm are explained in Section 2.

1

Simulation studies indicate that in-cache translation performs (at least) as well as TLBs,
while eliminating the extra hardware. Additionally, it eliminates the multiprocessor TLB con­
sistency problem. Since TLBs are merely special-purpose caches, multiprocessors that use a
TLB per processor suffer from a TLB consistency problem (analogous to the data cache con­
sistency problem discussed below). The SPUR in-cache translation mechanism avoids this prob­
lem by storing the PrEs only in the cache, where they are kept consistent by the regular
coherency protocol.

1.3. Cache Coherency

A multiprocessor system with caches must maintain cache coherency, i.e., all processors
must have a consistent view of memory. The SPUR workstation utilizes the Berkeley Ownership
protocol [Katz85] to guarantee that every processor sees only the most recently written data. The
protocol is distributed, meaning that all processors monitor the backplane and check their caches
on each bus operation. It attempts to minimize bus traffic by supporting "copy-back" caches and
cache-to-cache transfers on shared reads to dirty data.

The protocol's underlying principle is that a cache must explicitly own a memory block
before it is permitted to update the block. Within a cache, a given block can exist in one of four
states: Invalid (unaccessible), Unowned (readable but not writable), OwnShared (writable, but
must communicate writes to other caches), or OwnPrivate (writable with no communication
necessary). The protocol guarantees that a memory block has only one owner at a time, although
multiple caches may have Unowned copies. Ownership carries with it the privilege to update a
memory block, but also the responsibilities of providing the memory block to other processors on
a read and eventually writing the block back to shared memory. The coherency protocol is
described in more detail in Section 6.

1.4. SPURBus

A SPUR workstation consists of a set of processor boards connected by the SpurBus to
memory and peripherals. The SpurBus is based on the Texas Instrument NuBus™ [Texa83], with
extensions to support cache coherency. NuBus memory and peripherals are compatible with
SpurBus, allowing us to obtain these components from Texas Instruments.

The NuBus is a simple, 32-bit wide synchronous bus. Running at lOMhz, with 32 byte
block transfers, and 300ns latency to the first word, its maximum bandwidth is 29MB/s. The
pseudo-roundrobin arbitration policy provides (reasonably) fair access to all processors. Memory
mapped 1/0 devices and interrupts simplify writing device drivers.

To support cache coherency, the Spur Bus adds a separate virtual bus that runs semi­
independently from the physical NuBus. The virtual bus is used only by the processor boards,
and does not connect to memory or peripherals. On (most) bus operations, both the virtual and
physical addresses are sent out on their respective busses. The memory (or peripheral device)
always responds to the physical bus request; another processor may respond on the virtual bus, if
required by the coherency protocol.

Accessing memory and devices over the SpurBus is described in Section 3.5. Details of the
bus, including the protocol and arbitration, are described in the SpurBus Specification [Gibs85,
draft specification].

2

1.5. Memory Access Instructions

SPUR is a load/store machine, along the lines of RISC-H [Kate83], and supports a myriad
of load instructions [Tayl88]. The vanilla ld_32 instruction loads a single, aligned 32-bit word
from memory into a register. ld_ 40 loads a 32-bit word, plus an 8-bit tag into a register; the data
must be aligned on a 64-bit boundary. cxr is a variant of ld _ 40 that performs an appropriate tag
check. For the floating point coprocessor, there are four more load instructions, ld_sgl, ld_dbl,
ld_extl, and ld_ext2, that load data into the floating point registers.

These instructions each have an unusual variant. ld_32_ro, ld_40_ro, cxr_ro, ld_sgl_ro,
ld_dbl_ro, ld_extl_ro, and ld_ext2_ro perform their normal functions, but provide a hint to the
memory system that the program may write the same word, actually the same cache block, in the
near future. This information is used to improve the performance of the cache coherency proto­
col (see Section 6).

ld_32_ri is a privileged instruction that loads a 32-bit word, and ignores page faults in the
process. This strange and dangerous instruction is required for certain virtual memory operations
(see Section 7). Improper use of this instruction can obviously result in serious software errors.

The final load instruction, ld_external, in conjunction with st_external, provides access to
control space, which is described in Section 4.

The store instructions are less numerous and less exotic than the load instructions. st 32
and st_ 40 store a 32-bit word and, in the later case, an 8-bit tag from a register to memory. The
floating point store instructions, st_sgl, st_dbl, st_extl, and st_ext2, store from the floating point
registers to memory.

The test_and_set instruction provides a simple synchronization primitive. A word is read
from memory and loaded into a register. At the same time, the memory word is set to 1. These
two actions are guaranteed to be atomic (see Section 5.3.2 for exceptions), so spill locks can be
implemented easily.

1.6. Address Spaces

The memory system supports three address spaces: virtual, physical, and control. All load
and store instructions, except ld _external and st _external, can be used to access the virtual
address space. Two bits in the kernel processor status word register (KPSW), control access
between virtual and physical spaces. K _ VirtiFetch indicates whether instruction fetches and pre­
fetches should go to the virtual address space. K _ VirtDFetch indicates whether ld _ 32 and st _ 32
access the virtual or physical address space. All other load and store instructions always go to the
virtual address space. Control space is accessed exclusively by the ld _external and st _external
instructions. Protection is only checked on virtual memory accesses; control space can only be
accessed in kernel mode, and physical space should only be made accessible in kernel mode.

All user mode accesses, and most kernel mode accesses, will be to the virtual address space.
The virtual address space is divided into segments, to allow inter-process sharing, and pages, to
support demand paging of memory. Pages may be made non-cacheable, which is useful when
accessing 110 device registers. Only the ld_32 and st_32 instructions are allowed to access non­
cacheable pages, all other instructions will cause faults.

The physical address space provides direct access to main memory and 1/0 devices. In
addition, most of the processor board's state is accessible this way. The physical address space is
primarily intended for diagnostics, bootstrap code, and system error handling. The physical

3

address space is described in Section 3.

The third space, control space, provides access to control registers and cache management
functions. The ld_external and st_external instructions are used solely for this purpose. Bits 4-
2 of the effective address are interpreted as a subcacheop, specifvin2: the request. Control space
is discussed in detail in Section 4.

4

2. Virtual Memory Support

SPUR provides support for demand paged virtual memory. The cache controller performs
address translation using the In-Cache Address Translation algorithm. Maintaining translation
coherency is simplified because in-cache translation does not use a separate translation buffer.
However, the virtual address cache is NOT transparent to system software, and therefore the
operating system must enforce certain restrictions.

SPUR supports a single, segmented virtual address space, referred to as the global virtual
address space, that is shared by all processes. It consists of 256 segments, each one gigabyte, for
a total of 256 gigabytes of virtual storage. A processor has 32 bits of address, called the process
virtual address (PV A), so it can only access four segments at one time. The top two bits of the
process virtual address select one of four active segments; the operating system maintains the
active segment mapping. By software convention, the 4 segments usually contain system code
and data, user code, private data, and shared data, respectively. The mapping from process vir­
tual address to global virtual address is described below.

Processes can share data at the segment level; if any portion of a segment is shared by two
processes, the whole segment is shared. This is the only mechanism for sharing data, since
synonyms are prohibited because of the virtual address cache. The operating system must not
allow two global virtual addresses to map to the same physical address (i.e., a virtual address
synonym) or inconsistencies may arise (see Section 7 for more details).

Segments are further divided into 4 Kbyte pages. Page attributes, such as physical address
and protection, are maintained in a single pagetable, that maps the entire global virtual space.
Each pagetable entry (PTE) is 4 bytes (see Section 2.3). Because the virtual space is 256 giga­
bytes, the pagetable requires 256 megabytes. Obviously the pagetable must reside in virtual
space to reduce the physical memory requirements.

Because the pagetable is in virtual space, and it maps the entire virtual space, a portion of
the pagetable maps the pagetable itself. This self-referential portion of the pagetable is called the
second-level or root pagetable, and is illustrated in Figure 2.1. The root pagetable takes up 256
kilobytes, and contains the pagetable entries for each page in the pagetable.

Similarly, because the root pagetable is just a subset of the full pagetable, it is also mapped

by a portion of itself. This roo? pagetable (pronounced root squared) is only 256 bytes, and con­

tains PTEs for the 64 pages of the root pagetable. The roorl pagetable fits into a single page, and

is mapped in tum by a single PTE, called the roo? pagetable. The root3 pagetable is the only
PTE that maps the page in which it resides.

Figure 2.1 illustrates the mapping. At the left of the figure is the global virtual space. In
this example, the pagetable resides at address 0, and occupies the lowest quarter of segment 0.
The pagetable is shown expanded to the right of the global virtual space, as shown by the dashed
lines. The pagetable can be thought of as containing 256 segment pagetables, that each map one
of the global segments; the dotted lines illustrate that the segment i pagetable contains the map­
ping for segment i. The root pagetable is just a subset of the pagetable, and is shown expanded to
the right of the pagetable. Again, the root pagetable can be thought of as containing 256 segment
root pagetables, that contain the second level mappings for each of the segments. At the right of

Figure 2.1, the roorl pagetable is expanded. Each entry in this table maps a page of the root
pagetable; or, in other words, it is the 3rd level mapping for 4 segments of data. One of these

entries, in this example the entry at address 0, is the root3 pagetable. This entry maps the

5

256

0

0

0

2Gb

SegmoDll

I Ob

SegmoDlO

256Mb

Page Table

0

..

lr.

I
I

lc-

256 Megaby

I
255~

I
I

I
I

I
I

1Mb

I

~ 256K --···-------------

Global Virtual Space

Seg 2SSPT

0

0

0

Se&2PT

SealPT

SegOPT

Root!"

PageT able

lc--

lc--

I
I
I

2S6 K.ilob

I
I

I
I

I
I

I

4Kb

I
--T·------TX.b

I
·t---------··nth
I
I

~ --------·····Tx.b

I
256b --

Seg 2S5RPT

0

0

0

Seg3RootPT

Seg2RootPT

Seg I RootPT

SegORootPT

Roo~PT

Root PageT able
(resident)

256 I bvtes

\ I
\/
1\

I

II,· \.\.

8~
4b

I

~e• 4-7 R'PT

"~~PT

Root2 PageT able
(resideD!)

Figure 2.1: Self-referential Mapping of Pagetables

segment that contains the pagetable (plus the three adjacent segments).

In a traditional multi-level pagetable scheme, the translation hardware would start with the
root3 page table and work down to the 1st level of the page table. However, because the pagetable
is contiguous at a known location in virtual space, it is possible to go from a virtual address
directly to the virtual address of the pagetable entry. In other words, a traditional scheme would
traverse the tables in Figure 2.1 from right to left, while in-cache translation traverses them from
left to right.

The SPUR implementation simplifies the translation process slightly by stopping the trans­
lation at the root pagetable. The operating system locks down the root pagetable pages at "well­
known" locations in physical memory. This makes it possible to skip explicit accesses to the

root2 and root3 pagetables. The next two sections describe cache accesses and the translation
algorithm.

2.1. Virtual Address Cache Accesses

The cache is accessed using global virtual addresses (GV A), so the translation from process
virtual addresses (PV A) must be done first. The top two bits of the process virtual address select

6

one of the four active segments, which are specified by four global segment number (GSN) regis­
ters on the cache controller. The 8-bit global segment number is read out of the selected GSN
register, and prepended to the remaining 30 bits of the process virtual address to form the 38-bit
global virtual address. This process is illustrated in Figure 2.2 and section A of Figure 2.3.
Because the segments are large, the cache line can be accessed in parallel with the GSN lookup;
the high-order bits of the GV A are only needed during tag comparison.

Global Segment Registers (GSNs)

11
10~"""'---l

01
00 1--"' --l

Process Virtual Address (PV A)

Global Virtual Address (GV A)

Figure 2.2: Formation of Global Virtual Address

If the tags match, then the associated status bits are checked to make sure the access may
proceed. The coherency state has four values: Invalid, UnOwned, OwnShared, and OwnPrivate.
A processor read is permitted if the state is UnOwned, OwnShared, or OwnPrivate. A processor
write can proceed without access to the system bus only if the state is OwnPrivate and the
PageDirty bit is set (see Section 2.3.2). Finally, the protection is checked to verify access per­
mission (see Section 2.3.1).

2.2. Translation Algorithm

The translation algorithm is implemented in hardware. All exceptional conditions, such as
page faults, are detected in hardware, which aborts the current instruction and invokes a software
trap handler. This section describes the translation algorithm. The registers used during address
translation are accessible via control space, and are discussed in Section 4.

When a processor reference hits in the cache, no translation is necessary. However, when
there is a cache miss, we need to access the pagetable entry (PTE) to perform translation.
Because the cache also serves as a translation buffer, we look there for the PTE. First, we com­
pute the global virtual address of the PTE by using the virtual page number of the GV A (bits
37: 12) as an index into the pagetable. To simplify the computation, the pagetable is required to
be contiguous, and aligned on a 256 megabyte boundary in virtual space; the base address of the
pagetable is maintained in the PTEV A register. The address computation is simply to shift the
GVA right 10 bits and concatenate with the top 10 bits of the PTEV A; in the implementation, the
shifted GV A is stored into the low-order bits of the PTEV A. The PTEV A computation is illus­
trated in step B of Figure 2.3.

The PTEV A now contains the global virtual address of the PTE, which we use to access the
cache. If the PTE is in the cache, we check the PTEPage Valid, PTEPageReferenced, and
PTEPageCacheable status bits (described below) to see if we can bring the data into the cache. If

7

0

virtual page # I offset I PV A
~-------.-------L----~--~

0

L__-T-_L_ __ _:1;-8 __ __JIL___.:.;.12~___Jl GV A
r···;··-------------------------i··----~~=~---···i······- ····-·····················- 1 first cache ref

i j' : T I • ,. 1~1 ·----;~~~~-------------]

D I I
31 l
I 20

memory reference

8

~
I

third cache ref

PA (RPTE)

~---- -- ----------------------- ····-·-·····------- -------------------.!
31 0

I Physical Page Number I I RPTE

31 1 0

I 20 I I PA (PTE)

memory reference . .
! ·-- ------------ -------- -··---·r --===-:~ :==-· ---· -~---··----·---··---~-- 'i___ ·--- - -- ;;~-------- ,

31 0

r 20 I offset I PA
(Data)

memory reference
:_ ------------------------ ------------ ... -- --------------------------------------- .. -------- ______ ._ -- .J

31 0

Data

Figure 2.3: Translation from Virtual to Physical Addresses

8

so, we extract the physical page number and form the data's physical address, then transfer the
block into the cache to complete the miss handling. If the PTE is not in the cache, a fairly infre­
quent occurrence, then we have to find the root pagetable entry (RPTE) to obtain the physical
address of the PTE. Logically, we perform the same shift and concatenate operation to compute
the virtual address of the RPTE (the RPTEVA), but this time start with the PTEVA instead of the
GV A. However, to simplify the implementation the actual computation is a little different. The
high-order 20 bits of the RPTEV A register contain the base address of the root pagetable in vir­
tual space. The PTEV A is shifted right 10 bits, and the low-order 18 bits are stored into the low­
order bits of the RPTEV A. This process is illustrated in step C of Figure 2.3.

We now use the RPTEVA to look for the RPTE in the cache. If we find the RPTE in the
cache, then we check only the PTEPageValid bit. The PTEPageReferenced and PTEPageCache­
able bits are ignored. We then use the physical page number to bring the PTE into the cache, and
proceed as above. If the RPTE is not in the cache, we have to locate it in physical memory.
Rather than shift and concatenate again, we maintain four root pagetable map (RPTM) registers
that point into the root pagetable in physical memory. The registers point to the regions
corresponding to the four active segments. The physical address of the RPTE is computed by
simply concatenating the base physical address from the appropriate RPTM with the page offset
from the virtual address (in the RPTEVA). This is illustrated in step D of Figure 2.3.

The operating system is responsible for maintaining correct information in the address
translation registers. This is discussed further in Section 4.

2.3. Pagetable Entry Format

Each pagetable entry contains a 20 bit physical page number (PTEPagePhysicalAddress),
two bits of protection (PTEPageProtection), and 5 status bits that are understood by the hardware
(PTEPageValid, PTEPageDirty, PTEPageReferenced, PTEPageCacheable, and PTEPage­
Coherency). The PTE format is described in Table 2.1 and illustrated in Figure 2.4. The
PTEPage Valid bit indicates that the page is resident in main memory, in the physical page frame

31

PTEPagePhysica!Address
(20)

12 11

Unused/Reserved - -

76543210

I I
I I

I I

1 1-- PTEPageValid
I I I L __

I I

I

L----

PTEPageDirty

PTEPageReferenced

PTEPageCacheable

PTEPageCoherency

L - - - - - - - PTEPageProtection

Figure 2.4: Pagetable Entry (PTE) Format

9

Table 2.1: PageTable Entry Format

PTE Field Description

PTEPageValid (bit 0) Indicates that the page is valid.
PTEPageDirty (bit 1) Indicates that the page is dirty.
PTEPageReferenced (bit 2) Indicates that the page has been referenced. If

the page is marked as unreferenced, then the true
status (referenced or unreferenced) of the page is
uncertain.

PTEPageCacheable (bit 3) Indicates that the page is a cacheable page.
PTEPageCoherency (bit 4) When a miss occurs, the PTEPageCoherency bit

causes the cache controller to fetch the block
with ownership, regardless of the reference made
by the CPU. This is an important parameter for
tuning the cache behavior.

PTEPageProtection (bits 6:5) Used to hold the protection bits of the page. The
protection values are described below.

PTEPageReserved (bits 11 :7) 5 bits that are undefined in the architecture.
Use at your own risk.

PTEPagePhysicalAddress Physical page number for this page,
(bits 31:12) if the oa!!e is valid.

addressed by PTEPagePhysicalAddress. If the page is not valid, then PTEPagePhysicalAddress
is undefined (may be used by software for any other purpose).

PTEPageCoherency is a hint to the cache controller that the page is probably not shared,
and that on a cache miss it should fetch blocks with ownership. PTEPageCoherency only applies
when referencing data and instructions; the cache controller always fetches PrEs as shared
regardless of the value. Since PTEs are usually modified when accessed as data, the
PTEPageCoherency bit should probably be set in the root pagetable entries (although it need not).

PTEPageCacheable indicates that the hardware may cache blocks from the page. Loads and
stores to non-cacheable pages cause single-word bus reads and writes, bypassing the cache com­
pletely. This allows virtual memory access to 110 device control registers. Note that the operat­
ing system must make the pagetables cacheable (i.e., PTEPageCacheable must be set in root
pagetable entries), since the hardware does not check the PTEPageCacheable bit when fetching
PrEs.

2.3.1. Protection

Protection is provided on a page basis, i.e., each page may have a different protection mode.
When a block is brought into the cache, the protection is copied from the PTE into the cache line.
When the processor references a cache line, the cached protection bits are checked for access per­
mission. Because of this caching, changing the protection in a PTE does not necessarily affect all
blocks in the associated page immediately. A selective cache flush is necessary to propagate the

10

update.

SPUR provides four protection modes, listed in Table 2.2. Since there is no distinction
between reads and instruction fetches, all code pages must be readable.

When the translation recursion terminates (when the cache controller misses on an RPTE)
there is no PTE to specify the correct protection. Instead, the cache controller forces the protec­
tion to be PROT KRW UN A. - -

2.3.2. Reference and Dirty Bits

Most systems maintain a reference bit for each page to improve the performance of their
page replacement algorithm. Similarly, they also maintain a dirty bit to eliminate unnecessary
writes to secondary storage. In SPUR, these bits are called PTEPageReferenced and
PTEPageDirty. However, because of the virtual address cache, these bits are handled slightly
differently. PTEPageReferenced differs from the reference bit of other systems because it is an
approximation, rather than being completely accurate. PTEPageReferenced is set only when a
cache miss occurs to that page; more specifically, if PTEPageReferenced is not set when a miss
occurs, the cache controller generates a fault and sets the Reference Fault bit in the fault register
(see Section 5.2). The trap handler is then responsible for setting the PTEPageReferenced bit.
The PTEPageReferenced bit is only checked when accessing data and instructions, not pagetable
entries. If the pagetable is actually paged (most operating systems don't do this) then a separate
mechanism is needed to select a pagetable page as a victim. Note that the cache controller
assumes that if a data page is valid, so is its PTE. Thus a pagetable page can only be paged out if
none of the pages it maps are valid.

A similar strategy is employed for dirty bits. When a block is brought into the cache, the
PTEPageDirty bit is copied from the PTE into the cache line's PageDirty state bit. When the pro­
cessor initiates a write, the PageDirty bit is checked. If it is 1, the write proceeds normally. If
not, the write is handled as a miss, and the PTE re-examined. If the PTEPageDirty bit is 1, then
the miss handling is completed (the PageDirty bit is automatically updated), and the write
allowed to proceed. If PTEPageDirty is 0, however, the cache controller generates a DirtyBit
Fault. The trap handler is then responsible for updating PTEPageDirty.

When a page is flushed out to disk, care must be taken to ins.ure consistency between the the
cache and the PTE. This topic is discussed further in Section 7.

Table 2.2: Protection Modes

Protection Code Value Description
PROT KRO UNA 0 Kernel has read-only access, user has no access. - -
PROT KRW UNA 1 Kernel has read-write access, user has no access. - -
PROT KRW URO - - 2 Kernel has read-write access, user has read-only access.
PROT KRW URW 3 Kernel has read-write access user has read-write access.

11

3. Physical Address Space

The physical address space is primarily accessed by ld _ 32 and st _ 32 while in physical
mode; that is, when the K_ VirtDFetch bit is not set in the KPSW. In general, this should only
occur while the CPU is in kernel mode, because it can be used to bypass all other protection
mechanisms. It is also possible to access some parts of the physical address space using non­
cacheable pages. Ld_32 and st_32 to non-cacheable pages behave normally, except that they
completely bypass the cache. This feature is provided to simplify access to external 110 devices.
Since protection is supported on a page basis, it is possible to allow users access to some devices,
e.g., a bitmap display, while restricting access to others.

The physical address space of a SPUR processor, shown in Figure 3.1, is composed of an
on-board local space and a global external space. The local space is further divided into
addresses for an EPROM, a UART, status LEDs and direct access to the cache. The global space
is divided into per board slot spaces and a large region left for software definition.

3.1. EPROM

The 16K words of local EPROM are designed for use by debug, diagnostics and bootstrap
utilities. The EPROM provides a safe place to execute code when the world starts to dissolve; it
allows us to avoid the infamous "double bus-error" problem of the MC68000.

The EPROM address space starts at physical address OxOOOOOOOO and extends upwards to
OxOOOOFFFF.

3.2. UART

The UART is the primary communication link with the outside world during system debug.
It allows a remote hosted debugger to communicate with the CPU without relying on the
SpurBus. The UART found on the SPUR processor board is a Signetics SCN68681 Dual Univer­
sal Asynchronous Receiver/Transmitter (DUART) [Sign83]. This device provides 2 independent
UART interfaces, each with programmable baud rate, optional flow control, and polled or inter­
rupt driven operation. It also provides a single interrupting counter/timer (CIT). The transmitter
of each channel has single character buffering and the receiver has a 3 character FIFO. An inter­
rupt can be generated by either channel under program co~trol (via a mask) when break is either
detected or ceases, when the receive FIFO has any characters in it or is full, when the transmitter
is prepared to accept a character, or when the counter/timer reaches zero.

The DUART is accessed in the physical address space beginning at address Ox00010000.
Its registers are listed with their respective offsets in Table 3.1. Each register is a single byte
wide aligned on a word boundary. For a full discussion of DUART programming see the Signet­
ics data sheet. Below is a brief description of important registers and some recommended control
values.

3.2.1. Mode Registers (MRlA, MR2A, MRlB, MR2B)

Each channel has 2 different mode registers located at one address. The first access to a
mode register will go to MRlx. Subsequent accesses all go to MR2x until the "reset mode regis­
ter pointer" command (OxlO) is written to the corresponding command register. Do not change a
mode register while the corresponding receiver or transmitter is enabled.

12

Physical Address Space

FOOOOOOO

10000000

00000000

Slot Space

Uoer

Defined

Spur Bus

Space

Local Space

\

\
\

\

\
\

I

\
\

\
\

\

\

\

\

\
\

\
\

\

\
\

\

Slot Space
Slot IS

Slot 14

Slot 13

SlotO

Local Space

Undefined

Local

Space

Physical Tags

Snoop Tag!

Processa Tags

Cache RAM

Status LEOs

UART

EPROM

FFOOOOOO

~
FDOOOOOO

\

\
\

\

FIOOOOOO

FOOOOOOO

06000000

05000000

04000000

03000000

02000000

00020000

00010000

00000000

\

\

Local Slot Space
(Assume processor in Slot 13)

\
\

\

Interrupts
FD!OOOOO

FDOOOOOO

Figure 3.1: SpurBus Physical Address Space Organization

13

Table 3.1: DUART Register Addressing

Offset from CPU operation CPU operation
Ox00010000 ld 32 (physical) st 32 (physical)

Channel A

00 mode register MR1A,MR2A mode register MR1A,MR2A
04 status register SRA baud rate register CSRA
08 reserved command register CRA
oc receive FIFO RHRA transmit buffer THRA

Channel B

20 mode register MR1B,MR2B mode register MR1B,MR2B
24 status register SRB baud rate register
28 reserved command register
2C receive FIFO RHRB transmit buffer

Miscellaneous

10 input port change register IPCR auxiliary control register
14 interrupt status register ISR interrupt mask register
18 CIT high order byte cru CIT high order byte
1C CIT low order byte CTL CIT low order byte
30 interrupt vector register IVR interrupt vector register
34 input port register IP output port configuration
38 start CIT command set output port bits command
3C stop CIT command reset output port bits command

Load MRl with Ox13 to get 8 bit data transfers with no parity, no flow control, receive
interrupts whenever the receive FIFO is not empty (when these interrupts are enabled) and error
status reporting for the byte at the top of the FIFO (instead of reporting the logical OR of errors in
each FIFO position). For even parity use Ox03, for seven bit data use Oxl2, for interrupts only

when the FIFO is full use Ox53 and for flow control1 use Ox93.

Load MR2 with Ox07 to get a single stop bit and ignore flow control from the remote end of
a connected cable. To put a channel into loop-back mode, use Ox87, to get 2 stop bits use OxOF,
and for remote flow control use Ox 17.

3.2.2. Baud Rate Register (CSR)

Load this write only register with OxBB to transmit and receive at 9600 baud. Other values
are Ox 11 for 110 baud, Ox44 for 300 baud, Ox66 for 1200 baud, Ox88 for 2400 baud, Ox99 for
4800 baud and OxCC for 19.2K baud. Do not change this register while the corresponding
receiver or transmitter is enabled.

1 SPRITE on SUN hardware does not use flow control; however, for higher performance down-loading, this may become useful.
RTS (ready to send) and CTS (clear to send) are used for flow control. If RTS on this end is connected to crs on the other end and if
the other end is enabled to inhibit transmitting unless it sees CTS asserted, then the above setting for flow control will cause the con­
cerned DUART channel to halt transmission from the remote to itself whenever its FIFO is full and will resume transmission as soon
as the first byte is read out of the FIFO. To use flow control, software must also set OPO and OPl after each hardware reset (by writing
Ox03 to Ox00010038).

14

CSRB
CRB

THRB

ACR
IMR

CTUR
CTLR

IVR
OPCR

Table 3.2: Command Register (CR)

Field Value Command
0 noop

1-0 1 enable receive
2 disable receive
0 noop

3-2 1 enable transmit
2 disable transmit
0 noop
1 reset mode register pointer to MR 1
2 reset receiver state

7-4 3 reset transmitter state
4 clear status bits that report error conditions in SR
5 clear break state change interrupt bit in ISR and SR
6 start transmitting break
7 stop transmitting break

3.2.3. Command Register (CR)

This write only register is composed of three independently interpreted fields: receive,
transmit and miscellaneous as described in Table 3.2.

3.2.4. Status Register (SR)

The status register is read only and is shown in Table 3.3. This register should be read
before each byte is read out of the FIFO. Note that the error reporting bits can apply either to the
topmost byte in the FIFO or to the logical OR of all error bits in the FIFO according as deter­
mined by bit 5 in MRl. We recommend the former.

Table 3.3: Status Register (SR)

Bit Set interpretation
7 break has been received
6 framing error (stop bit missing)
5 parity error
4 FIFO overrun
3 transmitter empty (TxEMT)
2 transmitter ready for another byte (TxRDY)
1 receiver FIFO full (RxFFUL)
0 receiver FIFO not empty (RxRDY)

15

3.2.5. Interrupt Status Register (ISR)

The DUART generates an interrupt (that can be masked in the cache controller register
!Mask) whenever the logical AND of ISR and IMR is non-zero. The bits of this register are
described in Table 3.4.

3.2.6. Interrupt Mask Register (IMR)

The bits of the interrupt mask register correspond to the bits of the interrupt status register.
If a bit is set in the mask, the corresponding interrupt is enabled.

3.2. 7. Interrupt Vector Register (IVR)

On reset, the interrupt vector register is set to OxOF by the DUART, otherwise, it is
managed by CPU software. This may not be very useful.

3.2.8. Input Port Change Register (IPCR)

The Signetics DUART has 6 general use input pins, IPO - IP5. This register provides, for
each of IPO - IP3, the current value and a bit indicating at least one change since the last proces­
sor read. However, in SPUR, bits IP2 - IP5 are not connected and IPO, IPl are connected to the
remote CTSA and CTSB. So this register is of little use; still, IPCR<7:4> are set as IP3 - IPO are
changed and IPCR<3:0> have the current values of IP3- IPO.

Table 3.4: Interrupt Status Register (ISR)

Bit Description
7 changes in IP3-IPO (see ACR)

reset by reading IPCR
6 change in channel B break status

reset by clear break state change interrupt command in CR
5 channel B FIFO interrupt (see MRl)

reset by reading channel B FIFO
4 channel B transmitter ready for another byte

reset by writing to transmitter
3 counter/timer has 'rolled over'

read the 'stop CIT command' register
2 change in channel A break status

reset by clear break state change interrupt command in CR
1 channel A FIFO interrupt (see MRl)

reset by reading channel A FIFO
0 channel A transmitter ready for another byte

reset bv writing to transmitter

16

Table 3.5: Auxiliary Control Register (ACR)

Field Value Command
7 1 sets the maximum baud rate to 19.2K

000 counter clock from IP2 (not connected in SPUR)
001 counter clock from channel A transmission baud rate
010 counter clock from channel B transmission baud rate

6-4
011 counter clock frequency 3.6864/16 MHz
100 timer clock from IP2 (not connected in SPUR)
101 timer clock from IP2 /16 (not connected in SPUR)
110 timer clock frequency 3.6864 MHz
111 timer clock frequency 3.6864/16 MHz

3-0 if bit n is set then a cham~:e on IPn will set ISR<7>

3.2.9. Auxiliary Control Register (ACR)

This miscellaneous write only control register should be loaded with Ox80. If a free running
timer with a known absolute time frequency is important, load OxEO. This will cause the timer to
set ISR<3> every (CTUR,CTLR)*542.5 nsec. ISR<3> is cleared by reading the 'stop CIT com­
mand' register. See the Signetics data sheet for counter use.

3.2.10. Output Port Configuration Register (OPCR)

In SPUR most of the input and output port bits are not connected. IPO and IP1 are used to
receive CTSA and CTSB from remote end. OPO and OPI are used to generate RTSA and RTSB
to the remote end. The intention is to allow for flow control if desired. However, the other
DUART input and output ports provide a relatively simple interface for software control of SPUR
processor board hardware modifications. Software can read the input port bits and can individu­
ally set or reset the output port bits.

The output pins OP2 - OP7 can be configured to be software controlled by loading OxOO
into OPCR. See Signetics the data sheet for other configurations.

3.3. Status LEDs and Seven Segment Displays

During system debug and and after system failures we need processor state information to
diagnose low-level problems. The UART is the main interface for obtaining this state; however,
each processor board also has seven light emitting diodes (LEDs) and two seven segment
displays (the familiar digital watch numeric format). Three of the LEDs are not "under processor
control, and display important implementation level state. The other four LEDs and the seven
segments displays are controlled by the Display Register.

A st_32 to any physical address between Ox00020000 and Ox0002FFFF updates the Display
Register. The low-order 15 bits of this register determine the display pattern as described in
Tables 3.6 and 3.7. This register can only be written; the result of reads is undefined.

17

Table 3.6: Display Register

Field Command
0-3 least significant digit segment specifier
4-7 most significant digit segment specifier
8 light status LED 0
9 light status LED 1
10 light status LED 2
11 light status LED 3
12 lamp test (force all segments on)
13 light least significant digit decimal point
14 light most significant digit decimal point

Table 3.7: Seven Segment Display Digit Specifier

Value Segment Display
0,1,2,3,4,5,6,7,8,9 0,1,2,3,4,5,6,7,8,9

A 'small c'
B 'backwards small c'
c 'raised small u'
D 'capital E missing the lower half of the vertical line'
E 'capital E missing the top horizontal line'

3.4. Cache Rams

SPUR's performance depends on its cache memory's ability to satisfy loads, stores and
instruction fetches without accessing main memory. The cache relies on the principle of locality:
processor references to main memory tend to cluster in small regions of the address space for
extended periods of time. The cache saves copies of these regions in fast static rams. When the
processor makes a reference to memory, the cache checks to see if it has that data locally and, if
so, provides it without accessing main memory.

SPUR's cache is 128 Kbytes, direct-mapped, with instructions and data mixed together, 32
byte blocks, and delays memory updates as long as possible (writeback).

The cache memory is composed of data, tag, and state rams. The (virtual) tag rams contain
the high-order bits of the global virtual address (bits 37: 17) for each block of cached data. The
state rams hold 4 bits for each cache block, to describe the current status. Two of these bits
describe the coherency state: Invalid, UnOwned, OwnShared, or OwnPrivate. A processor read
will hit in the cache if the state is UnOwned, OwnShared, or OwnPrivate (and the tag matches, of
course). A processor write will only hit if the state is OwnPrivate. In addition, the PageDirty bit
must also be set for a write to proceed without accessing the main memory (see Section 2.3.2).
The fourth state bit, BlockDirty, is set whenever a block is modified. When a block is about to be
replaced, if the BlockDirty is set, it is first written back to memory.

18

To support the cache coherency protocol (see Section 6), a second copy of the tags and state
is provided. This copy allows the bus watching (snooping) operations to take place without
unnecessary interference with the processor. Only the coherency state is duplicated, since the
two dirty bits are not used by the coherency protocol.

The SPUR cache supports three access units: 32 bits, 40 bits and 64 bits. To accommodate
all of these in a single access, the data rams are organized 64 bits wide. Sequential 32 bit
accesses alternate between the "high" and "low" halves of the data rams.

As described in Section 2, a virtual address is translated to a physical address on cache
misses. To avoid redoing this translation on writebacks, the physical address is saved in the phy­
sical tag ram. Only a single copy of this tag is required.

3.4.1. Cache Data Rams

When addressed via the physical address space, the cache data rams behave as normal
memory, without the associative behavior of a cache. The cache ram addresses begin at
Ox02000000. The cache rams are only 32K words, so bits 17 through 23 are ignored and the
addresses wrap around.

During bootstrap and debug, the cache can be used as a 128KB scratch RAM. This can
facilitate some forms of diagnostics.

3.4.2. State and Tag Rams

The processor's copy of the cache state and tags may be accessed at any time, using the
ld_st and st_32 instructions in physical mode. These rams are addressed starting at Ox03000000.
Bits 16 through 5 of the address are used to select the block; note that these are not the least
significant bits. The 21 bit virtual tag (corresponding to bits 37 through 17 of the cache block's
global virtual address) is returned in bits 31 through 11 of the data word. In this same returned
data word is: the 2 bit protection field (see Section 2.3.1) in bits 6 and 5, the PageDirty bit in bit
3, the BlockDirty bit in bit 2, and the coherency state on bits 1 and 0. Bits 10 through 7, and 4
are undefined. Storing to these rams is done in the same way, with the same bit assignments in
the data word.

The snooping copy of the cache state and tags is identical to the processor's copy, except
that it is addressed beginning at Ox04000000 and neither the 2 bit protection code nor the dirty
bits are maintained. There is also a constraint on when the processor can access the snoop rams;
specifically, coherency bus watching should not occur while these rams are being read or written.
This is necessary to prevent collisions between the processor and snoop sides of the cache con­
troller, which would cause indeterminate results. Preventing snooping events from occurring
must be handled in software, and should be reserved for diagnostics and self-test.

3.4.3. Physical Address Tags

The cache controller maintains one copy of the physical address tag for each block in the
cache. These tags can be accessed starting at address Ox05000000. Bits 16 through 5 are used to
select the physical address tag. The 20 bit physical tag appears in bits 31 through 12 of the data
word (corresponding to bits 31 through 12 of the cache block's physical address), with bits 11
through 0 undefined.

19

3.5. SpurBus Space

Main memory and all peripheral devices are located in the physical address space and

accessed via the SpurBus2
. Each port onto the SpurBus (typically linking a SPUR board,

memory board or VO controller to the SpurBus) is called a slot in NuBus jargon. Each slot
identifies itself by a unique, backplane-provided slot id as described in Section 4.4. In this way
board 0 is defined to be the board in slot 0.

As shown in Figure 3.1, the NuBus divides the 4 Gbyte physical address space into a 256
Mbyte slot space starting at OxFOOOOOOO and a 3.75 Gbyte user space everywhere else. Slot
space is then subdivided into 16 pieces each 16 Mbytes. Each slot on the NuBus owns one of
these pieces which we call the slot's local slot space. The lowest address of board j's local slot
space is OxFjOOOOOO. Notice that the local space (EPROM, UART, etc) of all processors overlap;
a processor cannot address another processor's local space; but, each processor can address any
board's local slot space .

. The NuBus requires a slot occupancy test to be satisfied by every NuBus board: when the
highest order word of its local slot space (at address OxFjFFFFFC for board j) is read, the board
must respond (with a successful or failed status). All SPUR board's pass this test by responding
to single word reads or writes at this address with a bus error status (see Section 5).

The NuBus also requires a configuration ROM located in the high addresses of each board's
local slot space. Unfortunately SPUR processor board's do not provide a configuration ROM.

The most common use of slot space is for inter-processor communication. In the general

case each N uBus board maps its local slot space in an arbitrary fashion3. SPUR processor boards
provide only one form of mapped communications: 16 dataless interrupts. To generate interrupti
on board j, execute a single word write to physical address:

Notice that bits 19:6 of the address are ignored (we recommend using zeros) and that a data word
will be transmitted and ignored.

In summary, SPUR processor boards respond to all reads into their local slot space and all
writes into the top 15 sixteenths of their local slot space with a bus error. They respond to all
writes into the bottom sixteenth of their local slot space with successful status and treat these
writes as dataless interrupts.

2 A complete description of the SpurBus can be found in the SpurBus Specification manual [Gibs85].
3 SPUR systems are expected to use Texas Instruments NuB us boards for main memory, monitor, network interface, disk con­

trollers, etc.

20

4. Control Space

The control space provides access to the cache controller registers and functions. The cache
controller registers are used by the hardware during address translation and error handling. Con­
trol space accesses can only be made using the Id_external and st_external instructions. Bits 4
through 2 of of the effective address are interpreted as a subcacheop, specifying the request. The
prototype supports 4 subcacheops, listed in Table 4.1. Since these are privileged instructions,
their use in user mode will cause an access violation.

RESET generates a bus reset. The issuing processor returns with normal status, all other
processors handle the reset as an error (see Section 5.3). Since errors can result in lost state,
RESET should be used sparingly.

Table 4.1: SubCacheOp Description

SubCacheOp
Description

Name Value

RESET 1 Generate a NuBus Bus Reset. Returns normally
on the issuing processor.

RDREG 2 Read the cache register byte specified by effec-
rive address bits 16:5. Legal only with
ld external.

WRREG 3 Write the cache register byte specified by effec-
rive address bits 16:5. Legal only with
st external.

FLUSH 4 Flush the block specified by bits 16:5 of the ef-
fective address from the cache.

The FLUSH operation purges a cache line. The bits 16 through 5 of the effective address
specify the cache line to be purged. Owned blocks are written back to memory, and the cache
state is set to Invalid. Both RESET and FLUSH can be used with either ld external or
st external.

ld_external, with the subcacheop RDREG, reads a byte from the cache controller register
specified by the high-order bits of the effective address. The byte is loaded into the low-order
byte of the destination register. Similarly, st_external, with the subcacheop WRREG, stores the
low-order byte from the source register to the specified byte in the cache controller.

Because some of the registers are longer than 32-bits, and because of pin limitations in the
prototype implementation, only one byte is transferred on each load or store. The effective
address of the ld _external instruction specifies the register and the byte within the register, in
addition to the 3-bit subcacheop. Bits 12 through 8 specify the register, and 7 through 5 specify
the byte within the register; three bits are used to specify the byte since some registers are 38 bits.
Bits 4 though 2 specify the subcacheop (see Table 4.1). Table 4.2 lists the addresses for each
byte in each cache register.

21

Table 4.2: Cache Controller Register Addresses

Address<7:5>
Address<12:8>

100 011 010 001 000

00000 GSN0<7:0> RPfM0<19:12> RPTM0<11:04> RPfM0<03:00> --
00001 GSN1<7:0> RPfM1<19:12> RPTM1<11:04> RPfM1<03:00> --
00010 GSN2<7:0> RPfM2<19:12> RPTM2<11:04> RPfM2<03:00> --
00011 GSN3<7:0> RPfM3<19:12> RPTM3<11:04> RPfM3<03:00> --

00100 GVA<37:32> GVA<31:24> GVA<23:16> GVA<l5:8> GVA<7:0>
00101 PfEVA<37:32> PfEVA<31:24> PfEVA<23: 16> PfEVAd5:8> PfEVA<7:0>
00110 RPfEV A<37:32> RPfEVA<31:24> RPTEV A<23: 16> RPfEV A<15:8> RPfEVA<7:0>
00111 G<37:32> G<31:24> G<23:16> G<l5:8> G<7:0>

01000 -- T0<31:24> T0<23:16> TO<l5:8> T0<7:0>
01001 -- T0<63:56> T0<55:48> T0<47:40> T0<39:32>
01010 -- Tld1:24> T1<23:16> T1<15:8> Tl<7:0>
01011 -- T2<31:24> T2<23:16> T2<15:8> T2<7:0>

01100 -- 1Statusd1:24> 1Status<23:16> 1Status<l5:8> 1Status<7:0>
01101 -- 1Maskd1:24> 1Mask<23: 16> 1Maskd5:8> 1Mask<7:0>
01110 -- FEStatusd1:24> FEStatus<23: 16> FEStatus< 15:8> FEStatus<7:0>
01111 -- -- -- Mode<7:0> S1otld<3:0>

10000 -- C0<31:24> C0<23:16> CO<l5:8> C0<7:0>
10001 -- C1d1:24> C1<23:16> C1<15:8> C1<7:0>
10010 -- C2<31:24> C2<23:16> C2<15:8> C2<7:0>
10011 -- C3d1:24> C3<23:16> C3<15:8> C3<7:0>

10100 -- C4<31:24> C4<23:16> C4<15:8> C4<7:0>
10101 -- C5d1:24> C5<23:16> C5<15:8> C5<7:0>
10110 -- C6d1:24> C6<23:16> C6<15:8> C6<7:0>
10111 -- C7d1:24> C7<23:16> C7<15:8> C7<7:0>

11000 -- C8<31:24> C8<23:16> C8<15:8> C8<7:0>
11001 -- C9<31:24> C9<23:16> C9<15:8> C9<7:0>
11010 -- Cl0<31:24> C10<23:16> C10<15:8> C10<7:0>
11011 -- Clld1:24> C11<23:16> C11<15:8> Cll<7:0>

11100 -- C12<31:24> C12<23:16> C12<15:8> C12<7:0>
11101 -- Cl3<31:24> C13<23:16> Cl3<15:8> C13<7:0>
11110 -- C14<31:24> C14<23:16> C14<15:8> C14<7:0>
11111 -- C15d1:24> C15<23:16> C15<15:8> C15<7:0>

4.1. Address Translation Registers

A number of registers are required to support the in-cache address translation algorithm.
The general traqslation mechanism is described in Section 2.1, but the details of the registers are
described here.

4.1.1. GSN Registers

The global segment number (GSN) registers, also known as the active segment registers,
maintain the principle mapping from process virtual addresses to global virtual addresses. These
four registers, one for each of the four active segments, contain the 8-bit global segment numbers
used to generate the global virtual address. The top two bits of the 32-bit process virtual address
select one of the four active segments. The 8-bit global segment number is read out of the

22

selected register and prepended to the remaining 30 bits of the processor virtual address to form
the 38-bit global virtual address. The four segments are usually assigned to system code and
data, user code, private data (e.g., stack and private heap), and shared data.

4.1.2. PTEV A Register

The pagetable entry virtual address (PTEV A) register is a 38-bit special register. It can be
read and written in a byte-wise manner, like all other cache controller registers, but the low-order
28 bits are set by hardware each time a processor reference occurs. The high-order 10 bits should
be set to contain the high-order 10 bits of the global virtual address of the pagetable. Since writes
to the register occur a byte at a time, setting the high-order 10 bits corrupts the low-order 28. The
diagnostic programmer should be aware of this behavior. On a processor reference, the low-order
bits of the PTEV A (bits 27:2) are set to the virtual pagenumber for the data requested by the
CPU, that is, bits 37:12 of the GV A. The low-order two bits are set to zero. If the reference
misses in the cache, the cache controller then uses this address to reference the pagetable entry.

4.1.3. RPTEV A Register

The root pagetable virtual address (RPTEV A) register is similar to the PTEV A register. It
is also 38-bits wide, but differs in that the high-order 20 bits are the high-order address bits of the
root pagetable. Note that these top 20 bits should generally be two copies of the top 10 bits of the
PTEV A, concatenated together; this must be true if the pagetables are to be referenced as data
using virtual addresses. Each time a reference misses in the cache, the low-order 18 bits of the
RPTEV A are set with the offset of the root pagetable entry (bits 37:22 of the GV A, plus two
low-order zeros). If the first-level pagetable entry (addressed with PTEVA) is not in the cache,
then the RPTEV A is used to reference the root pagetable entry. As with the PTEV A, setting the
top 20 bits corrupts the remaining bits.

4.1.4. RPTM Registers

The GSN registers provide access to four of the 256 global segments. The root pagetable
map (RPTM) registers point to the root pagetable pages that map these four active segments.
These registers are 20 bits wide, and should contain the physical page number of the root paget­
able for their respective segments. These 20 bits are concatenated with the low-order 12 bits
from the RPTEV A to form the physical address of the RPTE.

4.1.5. GVA Register

The global virtual address (GV A) register is another special 38-bit address register. The
GV A holds the last global virtual address used to access the cache or bus. This register is
changed by all processor references, so is of little use to the programmer. In essence, it is a tem­
porary register used during address translation.

4.2. Global Register

The cache controller provides a single general-purpose, 38-bit register, called G. Like all
other registers in control space, this register can only be accessed while in kernel mode. Because
it is protected from user accesses, in can hold the virtual or physical address of a communication
area in main memory, to be used during error recovery.

23

4.3. System Timers

The cache controller provides 3 timers for use by the operating system. One timer, TO, is a
free-running 64-bit timer to be used for timestamps and other internal uses. The other two, Tl
and T2, are 32 bit interval timers, that interrupt the processor at the end of the interval. All three
timers may be started and stopped by setting a corresponding bit in the Mode register (see
below). When the bit is a 1 the timer is running, and when 0 it is stopped. The interval timers
clear their mode bits when their intervals expire.

4.3.1. 64-bit Timer

Timer TO is 64 bits and is incremented on every processor cycle. Assuming a minimum
cycle time of lOOns, this timer will take over 50,000 years to wrap-around. While it is possible to
stop this timer to obtain an accurate reading, it may be desirable to read it while running. In this
case, the counter should be read twice. The values read should differ only in the least significant
one or two bytes: depending on how long it takes to read these registers twice. If they differ in a
more significant byte, the process should be repeated.

4.3.2. Interval Timers

The other two timers, Tl and T2, are 32-bit interval timers. These timers count from
-interval up to 0. When zero is reached, the mode bit is cleared, halting the timer (note that the
counter may not halt exactly at 0, but will stop within a few cycles).

When the interval expires, the appropriate bit is set in the interrupt status register. If this
interrupt is not masked, then the processor will handle it. The interrupt bit remains set until it is
cleared by software.

4.4. Mode Register

The Mode Register, Mode, is used to control certain important functions of the cache con­
troller. Bits Mode<2:0> control the performance counters, described below. Bits Mode<4>,
Mode<5>, and Mode<6> control the timers TO, Tl, and T2. If the bit is a one, then the timer is
running, if it is zero the timer is stopped. When an interval timer expires, an interrupt is gen­
erated and the timer turns itself off (clearing the Mode bit).

Table 4.3: Bit Assignments in Mode Register

Bits in Mode Descri_mion
0-2 Mode for performance counters.
3 Reserved to Garth.
4 Enable timer TO.
5 Enable timer Tl.
6 Enable timer T2.
7 Reserved to David.

24

4.5. Slot Id Register

The Slot Id Register contains a read-only 4-bit value that uniquely defines the processor's
slot in the SpurBus backplane. This value is hardwired on the backplane, and directly read in to
the register. This register can be read normally, but although writes may be executed, they have
no effect on its contents. When reading the register, its value is placed on the least significant 4
bits of the data word.

4.6. Exception Status Registers

There are 3 special registers that support exception processing: !Status, !Mask, and FES­
tatus. These registers are discussed in Section 5.

4.7. Performance Counters

A number of counters are provided by the cache controller to aid in the performance
analysis of the working multiprocessor. These counters can be used to measure important perfor­
mance metrics without perturbation to the measured system. Counters are provided both for
architectural events, such as cache misses and bus operations, and calculating costs of the imple­
mentation, such as the number of cycles a processor is idle while a coherency-related operation is
taking place. Many of the latter type involve the partition of the cache controller that services
processor requests for the cache, which is referred to as the PCC in this document.

There are only 16 counters, and many more interesting events to measure. In order to pro­
vide a rich selection of performance metrics, five counter modes were implemented, each mode
counting a different subset of events (see Table 4.4). One mode shuts off the counters so that
they may be initialized and read. Three modes measure the frequency of different types of cache
accesses; the three modes, Perf_User, Perf_Kernel, and Perf_Both, distinguish between user and
kernel mode accesses. The final mode, Perf_Snoop, counts coherency-related events (see Sectiun
6 for a description of the protocol). ·

The counters are listed in Table 4.5, along with the events measured while in one of the
cache modes, or in the snoop mode. Only one event is counted in all modes.

Table 4.6 lists all the events that are measured. Note that some of the counters measure
events that may not be the desired, final metric; in these cases some postprocessing will be
required to obtain a more useful metric. Formulas for many of the final metrics are given in

Table 4.4: Performance Counter Modes

Mode Mode<2> Mode<1> Mode<O> Descri_12_tion

Perf Off 0 0 0 Do not measure any events
Perf_Snoop 0 0 1 Measure statistics for coherency protocol
Perf User 1 0 1 Measure cache statistics for user programs
Perf_Sys 1 1 0 Measure cache statistics for the kernel
Perf Both 1 1 1 Measure cache statistics for user and kernel

25

Table 4.5: Counters by Mode

Counter Name in Mode
Counter Perf User
Number Perf_Sys Perf_Snoop

Perf Both

co Pre fetches Bus Wait
Cl FetchesSuperset MasterWFI
C2 ReadsSuperset MasterRS
C3 WritesSuperset MasterRFO
C4 PrefetchHits WaitWFI
C5 Fetches Wait Update
C6 Reads WFIInv
C7 Writes RFOinv
C8 RPTEsSuperset OwnRS
C9 UPTEMisses OwnDirty

ClO Write backs OwnPrivateRS
Cll Dirty Misses OwnRFO
C12 Bus Wait PCCBusyCache
C13 MasterWFI PCCBusyState
C14 External! WFIInterference
C15 External2 WB Interference

Table 4.7.4

Each counter is 32-bits, and will therefore wrap-around in no less than 4 minutes (with a
lOOns clock). The long interval between samples reduces the measurement distortion to a negligi­
ble amount. Since the counters may be turned off, by setting the mode to Perf_ Off, it is not
necessary to read them while running. Rate information can be obtained by reading the counters
in conjunction with sampling the 64-bit timer, TO.

Most interesting events can be measured within the cache controller. In addition, external
events can be counted in one of the cache modes with two cache controller chip pins,
EXT_STAT<O:l>, which are sampled on Phi3. Usually, these pins will be used to count instruc­
tion issue and instruction buffer hit rates, although any other event with the correct timing con­
straints can also be measured.

Complete information on coherency protocol performance requires measuring additional
events on the backplane, using an external hardware monitor. Examples of metrics in this
category are the number of times a snoop could have responded with data, but didn't, because of
the semantics of the Berkeley Ownership protocol; or, the particular bus operations that are per­
formed on certain addresses and the frequency with which they occur.

• Cf. [Egge88] for additional metrics.

26

Table 4.6: Description of Events Counted

Counter N arne
Cache Snoop

Description
Modes Mode

Bus Wait X X Number of cycles the PCC waited for a bus transfer to complete, including.
arbitration.

Dirty Misses X Number of extra misses to check the PTE page dirty bit on a write.
External I X Number of events on EXT STAT <0>.
External2 X Number of events on EXT STAT<l>.
Fetches X Number of instruction fetches.
FetchesSuperset X Number of instruction fetches+ instruction fetch misses.
MasterRFO X Number of Read Own bus operations generated.
MasterRS X Number of Read bus operations generated.
MasterWFI X X Number of Writeinv bus operations generated, including those

changed to Read by an external invalidation.
OwnDirty X Number of times this cache transferred an owned dirty block transfer.
OwnPrivateRS X Number of times this cache was a private owner of a block on an

external Read.
OwnRFO X Number of times this cache was owner of a block on an external ReadOwn.
OwnRS X Number of times this cache was owner of a block on an external Read.
PCCBusyCache X Number of cycles the PCC ignored a snoop request for the cache

(plus a state update) & then modified its state.
Includes the PCC' s receipt of the snoop's request signal.

PCCBusyState X Number of cycles the PCC ignored a snoop request to update its state
(no data transfer) & did the state update.
Includes the PCC's receipt of the snoop's request signal.

PreFetches X Number of instruction prefetches.
PreFetchHits X Number of instruction prefetch hits.
Reads X Number of data reads.
Reads Superset X Number of data reads +data read misses.
RFOinv X Number of invalidations (no data response) due to an external ReadOwn.
RPTEsSuperset X Number of RPTE references + RPTE misses.
UPTEMisses X Number of UPTE misses (or RPTE references).
WaitWFI X Number of cycles the PCC waited for Writeinv to complete (including ar-

bitration). This includes the Writelnv's that are canceled by an external
invalidation of the cache block. It does not include any interruptions by
the snoop to update the PCC state.

WaitUpdate X Number of cycles the PCC was idle while the snoop updated its state on a
cache flush (of a clean block only).

WBinterference X Number of Writelnvs canceled by an external ReadOwn or Writelnv.
WFIInterference X Number of Writelnvs canceled (& changed to ReadOwn) by an external

ReadOwn.
WFIInv X Number of invalidations due to an external Writelnv.
Writebacks X Number of blocks written back to memory (includes flushes & copybacks

that are canceled by an external invalidation).
Writes X Number of data writes.
WritesSuperset X Number of data writes+ data write misses+ Dirty Misses+ MasterWFis.

27

Table 4.7: Formulas for Typical Memory System Metrics

Metric Mode

FetchHits Cache
ReadHits Cache
WriteHits Cache

UPTERefs Cache

UPTEHits Cache
RPTEHits Cache
TotalBusWait Cache

BusContention Cache

CacheDelay Snoop

CacheTransfer Snoop

StateDelay Snoop

TotalWaitWFI Snoop

W aitUPdateOPs Snoop

TotalWaitUpdate Snoop

TotalBusWaitSnoop Snoop

Formula

C5- (Cl- C5)
C6- (C2- C6)
C7-
(C3- C7- Cll - Cl3)
(C5 + C6 + C7) -
(FetchHits + ReadHits
+ WriteHits)
UPTEs-C9
C9- (C8- C9)
Cl2 + (Cl - C5) +
(C2 - C6) + (C3 - C7)
+ C9 + (C8- C9) + ClO

TotalBusWait-
((Cl - C5) + (C2- C6) +
(C3- C7- C13) + C9 +
(C8 - C9) * 18) -
(C10 * 16)-
(Cl3 * 15)
C12- (Cll + C8) * 3

1 + C12 + 2 + 10

C13- (C6 + C7) * 3

C4+Cl

C515

C5 + WaitUPdateOPs

CO + MasterRS +
MasterRFO +
MasterWFI

28

Description

Eliminate fetch misses from total fetches.
Eliminate read misses from total reads.
Eliminate write misses from total writes.

Eliminate hits from total cache accesses.

Eliminate UPTE misses from total UPTE accesses.
Eliminate RPTE misses from UPTE misses.
The total number of bus cycles: BusWait + an addi­
tional cycle for each bus operation. This is a slight
overestimate because Writebacks includes canceled
copybacks and flushes.
The number of additional cycles that memory accesses
take because of contention for the bus: TotalBusWait­
each type of operation * its nominal bus cycle cost.
This is a slight overestimate because Writebacks in­
cludes canceled copybacks and flushes.

Eliminate from PCCBusyCache the number of times
the PCC was owner on an external request * the
number of cycles for the PCC to update its state.
CacheDelay includes the cycle in which the PCC re­
ceives the snoop's request.
The time to carry out cache-to-cache transfers: the
number of cycles for the snoop's request to the PCC
for the cache+ PCCBusyCache +the PCC's handling
of the request other than for state update + the snoops
actual use of the cache (including cleanup after the
bus transfer).
Eliminate from PCCBusyState the number of times
the PCC updated its state for the snoop (no data
transfer) * the number of cycles/update. This assumes
that the PCC was in the midst of a cache hit (a miss
would have added another cycle to the delay) & that
the cycle in which the PCC receives the snoop's re­
quest is included in the delay.
An extra cycle/Writelnv must be added to get the total
PCC idle cycles during Writelnvs.
Number of cache flushes to clean blocks. The divisor
includes the snoop acknowledgement cycle.
An extra cycle/state update must be added to get the
total PCC idle cycles on a cache flush of clean blocks.
An extra cycle/bus operation must be added to get the
total PCC idle cycles during bus transfers. This is a
slight underestimate, because copybacks are not
counted.

5. Errors, Faults, Interrupts, and System Reset

The memory system generates several levels of exceptions, each with different semantics.
Interrupts are generated by external events, and are a result of normal operating behavior. Faults
occur when a virtual memory access cannot be completed without software intervention. A typi­
cal fault is caused by referencing an invalid page (i.e., page fault). Errors occur when some phy­
sical exception occurs in the memory system; most errors result from hardware problems (e.g.,
parity error) but some can be caused by software problems (e.g., corrupt pagetable entries). Sys­
tem Reset forces the system into a reset state, and causes it to begin a bootstrap sequence.

5.1. Interrupts

Interrupts fall into two classes: internal and external interrupts. Internal interrupts are gen­
erated by devices local to the processor board, such as the UART and interval timers. External
interrupts are generated off of the processor board, and are memory mapped into the physical
address space.

When an interrupt occurs the appropriate bit is set in the interrupt status register (!Status).
There are 32 bits in the !Status, although currently only 19 are defined. A second register, the
interrupt mask register (!Mask), is used to mask out individual interrupts. Setting IMask<i> to 0
disables the ith interrupt from interrupting the processor. An interrupt is pending only if there is
an unmasked interrupt posted:

Interrupt= IMask<0>&IStatus<0> I !Mask< 1 >&I Status< I> I ... I 1Mask<31 >&1Status<31 >

All interrupts are masked by both the K_AllTraps and K_Interrupt bits in the kernel processor
status word (KPSW). If the interrupt is not masked, the processor completes the outstanding
memory request, then clears K_AllTraps and begins execution at address Ox1040 (the interrupt
trap vector). All memory system exceptions (faults and errors, as well as interrupts) cause the
processor to switch into kernel mode, copying K_CurMode to K_PrevMode and clearing
K CurMode.

Both !Status and !Mask are read and modified using the usual byte-wise load and store
operations, however the store operation has slightly different semantics for the !Status register.
To prevent interrupts from being lost, the new contents of !Status becomes the bitwise AND of
the old contents and the 1 's complement of the byte being "written". This allows the program­
mer to selectively clear individual bits (by putting a '1' in the appropriate bit position) after ser­
vicing the interrupt, without unintentionally affecting other bits in the register. The addresses of
the registers are listed in Table 4.2, and the assignment of bits within the register is listed in Table
5.1.

External interrupts are generated by writing a single word to particular addresses in the phy­
sical address space. The interrupts are mapped into slot-space for each processor board. The
address to generate interrupti for slot j is:

where j is a 4 bit field. If a processor is in slot j, then the write will complete normally. How­
ever, if there is no board in slot j, then the write will end in a bus-timeout error (see below). Note

29

Table 5.1: Interrupt Status/Mask Register Assignments

Bit in IStatus/IMask Description of Interruot
0 External Interrupt 0
1 External Interrupt 1
2 External Interrupt 2
3 External Interrupt 3
4 External Interrupt 4
5 External Interrupt 5
6 External Interrupt 6
7 External Interrupt 7
8 External Interrupt 8
9 External Interrupt 9

10 External Interrupt 10
11 External Interrupt 11
12 External Interrupt 12
13 External Interrupt 13
14 External Interrupt 14
15 External Interrupt 15
16 Completion of interval timer T1
17 Completion of interval timer T2
18 UART interrupt
19 Auxilarv Interruot

that if some other board (e.g., memory) is in slot j, the write may complete with unintended
results.

5.2. Faults

Faults are generated when a processor reference cannot be completed without software
intervention. The current instruction is aborted, and control transferred to address Ox1040. The
CPU clears the K _All Traps bit in the KPSW to mask out the fault while it is being handled. The
fault handler will normally clear the K _Faults bit and re-enable K _Ali Traps very quickly,
because it is dangerous to run with traps disabled. As long as either K_AllTraps or K_Faults is 0,
the CPU will ignore faults. If a fault occurs and is ignored, the cache controller will generate an
error in addition to the new fault. Since errors are not masked by K_AllTraps, the system has a
chance to recover or at least debug this condition. However errors can result in lost process state;
therefore they should be strongly avoided.

Faults are similar to interrupts in that they cause a corresponding bit to be set in the
Fault/Error status register (FEStatus); FEStatus is used to post errors, as well as faults. Faults
differ from interrupts because they cannot be masked individually. All of the faults are listed in
Table 5.2, along with their bit position in the register.

30

Table 5.2: Fault Bits in the FEStatus Register

Bit in FEStatus Description of Fault
16 Protection Violation
17 Page Fault (Reference to page w/o PTEPageValid set)
18 Reference Fault (Reference to page w/o PTEPageReferenced set)
19 Dirty Bit Fault (Write to page w/o PTEPageDirty set)
20 Bad SubOp Fault (Invalid SubOp in Ld _External or St_ External)
21 Try Again (Bus reference generated a try-again status)
22 Illegal Cache Operation (on non-cacheable page).

5.3. Errors

Errors are generated by hardware problems or serious operating system failures. Memory
parity errors and bus protocol violations are examples of hardware failures that result in errors.
Software problems, such as corrupt pagetable entries, can cause bus errors or bus timeouts to
occur.

Errors are handled similar to faults. The error condition is posted by setting the appropriate
bit in the FEStatus register (see Table 5.3). When an error is detected, the CPU switches to phy­
sical mode and begins execution at address Ox1010 in EPROM. The K_Error and K_AllTraps
bits are cleared, causing all further exceptions to be ignored. The error handler must be
EXTREMELY CAREFUL not to generate a second error until it has re-enabled K_Error; if the
error handler causes a second error, then the processor will hang until a system reset.

Errors can occur "out-of-band", as well as in response to virtual and physical memory
references. An out-of-band error is caused by a SpurBus reset. These resets result from a number
of error conditions on the bus. Some bus errors result in cache state becoming inconsistent (the
snoop copy differs from the processor copy). In these cases, the cache controller that is master of
the transaction generates a SpurBus reset, and reports the error condition that resulted in the
inconsistent state. All other processors will see a simple bus reset. The error handler must patch
up the cache state before resuming normal operation.

It is important to note that an error may cause the loss of a register window, if the error
occurs while in the window overflow handler. Thus some errors may cause processes to be killed,
and may even cause a system reset, if the lost window is within the kernel.

5.3.1. Recovering from Inconsistent Cache Errors

When an error results in an inconsistent cache, it is necessary to restore consistency before
switching back to virtual addressing mode.

The inconsistency arises because the snoop copy of the cache state is updated before the bus
operation begins, while the processor copy is not updated until after successful completion. Thus
in many cases an inconsistency can be detected just by locating a block whose state and tags
differ between the two copies (there should be exactly one). Consistency can be restored by
applying the following rule: if the block is marked dirty, copy the processor copy to the snoop
copy, if it is clean, set both copies of the state to Invalid. The first case occurs when a write-back

31

Table 5.3: Error Bits in the FEStatus Register

Bit in FEStatus Description of Error
ott System Reset (A long reset occurred on the SpurBus)
1 Bus Reset (A reset was detected on the SpurBus)
2t A Try-Again bus status occurred, resulting in inconsistent cache state
3t A bus timeout occurred, resulting in inconsistent cache state
4t A bus error occurred, resulting in inconsistent cache state
6 A bus timeout occurred, however the cache remains consistent
7 A bus error occurred, however the cache remains consistent
8 Internal error: SBC inconsistency.
9 Internal error: bad sbc request code.

10 Internal error: bad sbc ack code.
11 Fault occurred while CPU was ignoring faults.

t error generates SpurBus reset
tt Does not affect the ERROR signal to the CPU.

to memory was in progress. The second case occurs when some other operation was being per­
formed. In some special cases (for example, while processing a dirty bit miss), there may not be
any blocks that are marked inconsistent. In these situations, flushing the cache will eliminate the
inconsistency. This works because dirty blocks are known to be OK and can be written back to
main memory; the inconsistent block must be clean, and therefore will be invalidated.

5.3.2. Atomic Operations and Error

The test_ and _set instruction provides a simple read-and-set atomic primitive to aid in syn­
chronization. Unfortunately, in the implementation of the SPUR prototype, errors can cause the
"atomic" operation not to be atomic; i.e., the "set" portion of the "read and set" can be lost.
This type of error will generally result in a system reboot. It is probably possible to avoid this
problem in software by following a restricted lock/unlock convention, with support in either the
error handler or in-line code to detect the problem and re-execute the test_ and_ set.

32

6. Cache Coherency Protocol

6.1. Functional Overview

The Berkeley Ownership coherency protocol is based on the concept of processors owning
cache blocks. The processor that owns a block may update it without initiating a bus transfer. If
a cache has a block but does not own it, the processor must first obtain ownership before perform­
ing the update. Ownership is obtained by a broadcast to other caches, causing them to invalidate
their copies of the block.

The snoop portion of the cache controller monitors the system bus for operations affecting
blocks contained in its cache. The snoop compares the virtual addresses of all bus transactions
with its own copy of the cache's virtual address tags. When an address match is made, the snoop
performs consistency-preserving operations, based on the type of bus request and the state of the
cache block.

6.2. The Coherency States

Each cache block has associated with it a coherency state that (1) denotes the coherency
status of the block in the entire multiprocessor system, (2) restricts what operations are allowed
on that block and (3) defines what coherency-preserving responsibilities the cache controller has
in handling it. The states, their values, and their precise semantics are defined in Table 6.1.

6.3. The Coherency Protocol Bus Operations

A cache block's state can only change when a bus operation occurs, either originated by the
local or an external processor. The type of bus operation, its origin, and the prior state determine
the new state. The SPURBus supports conventional read and write operations, as well as two
additional cache coherency protocol specific operations. A complete description of the bus
operations (from the point of view of the initiating processor) is given in Table 6.2).

Table 6.1: Cache State Semantics

State Name Value Semantics
Invalid 0 The block is invalid.
UnOwned 1 The block is valid and possibly shared in other caches. The entry is read-

able, but cannot be written locally without first acquiring ownership.
OwnPrivate 3 The block is the only copy in the system outside memory; therefore it can

be written locally. The cache controller must provide the data to a re-
questing cache and flush the block to memory on replacement.

OwnShared 2 The block cannot be updated without broadcasting an invalidation signal.
The cache controller must provide the data to a requesting cache and flush
the block to memory on replacement.

33

Table 6.2: Bus Operations

Bus Operation Value Description
Read 0 A conventional read of a cache block. The state value of the block be-

comes UnOwned.
ReadOwn 2 Similar to Read, except that other cache controllers invalidate cache

blocks with matching tag values. The state value of the block becomes
OwnPrivate.

Writelnv 5 A one-word dummy write. Causes the other cache controllers to invali-
date cache blocks with matching tag values. The state value of the block
becomes OwnPri vate.

Write 3 A cache block is updated to memory, but no cached copies are invalidated.
Used for copybacks on block replacement. The state value of the block I
becomes Invalid.

6.4. The Protocol from the Point of View of the Processor

When a processor load hits in the cache, the appropriate word is provided to it. (See Figure
6.1 for the state transition diagram of the Berkeley Ownership protocol. In this figure the boxes
are the states, the solid lines are bus operations that cause processor-initiated state updates, and

Wr

Error <E--­
Write

I

ite

State Transitions in Berkeley Ownership

I ReadJ

I Invalid I<------ writefn;----- -1 UnOwned
" /'\ ';' I '\

t

ReadOwn

I
I ReadOwn
I
I Write
I Write! nv
I
I -----· ------------- - 1

ReadOwn
ReadOwn I

Writelnv I
I
I

~-------~~-------j
I \1\1

Own Shared OwnPrivate
I Writelnv 'I

Figure 6.1: Transition Diagram of the Berkeley Ownership Protocol

34

--- -3> Error
Write
Writelnv

the dashed lines are snooped bus transactions that resulted in snoop-initiated changes.) On a miss,
if the current cache block is dirty, it must first be flushed back to memory with Write. If the
PTEPageCoherency bit is set or if the instruction is a ReadOwnership instruction (e.g.,
ld_32_ro), the processor obtains ownership by using ReadOwn; otherwise it issues Read. In the
former case the state becomes OwnPrivate, and in the latter UnOwned.

If a processor store hits on a block with a state of OwnPrivate, the update can be made
without issuing a bus operation. If the state of the block is OwnShared or UnOwned (and the tags
match), then the processor signals (with Writeinv) its intention to write before it modifies the
block. The snoops of the other processors invalidate matching blocks in their caches. If the state
is Invalid or if the tags do not match, the cache controller reads the requested block with Rea­
dOwn. On cache misses, a dirty block is replaced with Write before the requested block is read.
For all writes the final state of the block is updated to OwnPrivate.

6.5. The Protocol from the Point of View of the Snoop

The snoop accesses the cache only to invalidate a block written by another processor or to
provide an owned block for an external read request. For all bus operations no action is taken
when the block is not in the cache. If the bus operation is Read or ReadOwn and the block's state
is OwnPrivate or OwnShared, the snoop obtains use of the cache and provides the data in an
inter-cache transfer. The snoop changes the state to OwnShared if the bus operation is Read, and
to Invalid if ReadOwn. If the cache state is UnOwned and the ReadOwn operation occurs, the
snoop invalidates its copy only.

Writeinv occurs when a processor with a UnOwned or OwnShared copy wants to update it.
If the snoop's copy of the state is UnOwned or OwnShared, the snoop invalidates its copy. If the
state is OwnPrivate, the snoop generates an error, since this is semantically illegal, and should not
occur.

6.6. Atomic Operations

Operating systems and parallel programs frequently use spin locks to serialize access to
shared data and critical sections. To minimize coherency overhead, we suggest that spin locks be
implemented by a test-and-test-and-set algorithm [Sega84] (see Figure 6.2).

35

I* Lock via the test-and-test-and-set algorithm. *I
spin(lockp)
int *lockp;
{

while (*lockp) {

}
}

while (*lockp); I* spin using ld_32 *I
while (! *lockp) {

}

if(! test_and_set(*lockp)) {
!* test and set can fail due to errors. *I
if (*lockp) {

return; I* Got the lock *I
} else {

I* test_and _set failed, see Section 5. *I;
}

} else {
break; I* Didn't get the lock. *I

}

Figure 6.2: Locking Sequence

The test-and-test-and-set algorithm minimizes bus traffic in the case of contention for a lock. In
this situation, all processors other than the owner of the lock repeatedly check the lock to see if it
has been released. The initial read brings an UnOwned copy of the block into the cache; the pro­
cessor continues to read this copy with no further bus operations until the lock is released. When
the lock is released, the spinning processors first read the block back into their caches, then (after
determining that it is free) execute the test_ and_ set instruction. The first processor to execute
test_ and_ set will issue a Writeinv to obtain ownership. The losing processors will have the
block ''stolen'' out from under them by the Writeinv, and have to issue a ReadOwn operation to
get it back.

If the initial read is omitted, every test_and_set instruction by the spinning processors will
cause a bus operation (ReadOwn). The cost of the test-and-test-and-set algorithm is one addi­
tional bus operation each time a lock is obtained, if there is no contention. Since most locks have
little contention, it may be better to try a single test_and_set first, then fall back to the spin algo­
rithm only when there is contention.

6.7. Coherency Optimization

As described in Section 2, the cache controller checks the PfEPageCoherency bit on cache
misses. If it is set, ownership is obtained using the ReadOwn operation, regardless of the proces­
sors request. The processor can thereafter write to the block without causing additional bus
operations. If PfEPageCoherency is not set, two bus operations will be necessary when a block
is read before it is written; the initial read will generate a Read operation, and the subsequent

36

write will cause a Writelnv. The PTEPageCoherency bit should generally be set for private data
pages, e.g., the stack and private heap, since these will not usually be shared by multiple proces­
sors. The bit should generally not be set for shared data pages and code pages.

The ReadOwnership instructions, e.g., ld _ 32 _ro, cause ownership to be obtained on a cache
miss, regardless of the PTEPageCoherency bit. These instructions can obtain the same bus traffic
optimizations even when the page is normally shared. An intelligent compiler or hand-coded
inner loops can use these variants of the load instructions to improve performance.

37

7. Virtual Cache Algorithms

The physical address caches in most commercial computers are completely transparent to
the operating system. In other words, the operating system executes correctly whether the cache
exists or not, and only the performance is affected. This is not the case for virtual address caches,
such as the one used in SPUR.

An operating system running on the SPUR hardware must enforce certain restrictions and
take appropriate actions to maintain intra-cache and cache-memory consistency. These actions
are required even in a single processor system because the problems are due to the virtual address
cache, not the multiple processors. This section summarizes these responsibilities.

7 .1. Restricting Virtual Address Synonyms

A virtual address synonym, also known as an alias, exists when two (global) virtual
addresses map to the same physical address. When a cache is indexed using the virtual address
then it is possible for the same datum to reside in two separate cache lines. If one copy is
modified, the other copy becomes out of date. Clearly, inconsistencies of this kind can result in
erroneous results.

This problem exists for both virtual address caches and some physical address caches
(where addresses are translated in parallel with the cache access). High-performance systems
typically throw hardware at the problem, increasing the cost of the processor node. Expensive
hardware solutions are undesirable for a multiprocessor workstation, where low unit cost is
important. Instead, SPUR uses a (primarily) software solution to eliminate synonyms, and there­
fore prevent the problems from arising.

The operating system is responsible for preventing synonyms. This means the operating
system must maintain a one-to-one mapping between the global virtual address space and the
physical address space. This restriction guarantees that every memory block always maps to the
same cache line each time it is brought into the cache.

This restriction can be relaxed for pages that are read-only since synonyms are only a prob­
lem when they are written. Thus, it is possible to implement copy-on-write since pages are made
read-only until they are copied. Because protection is maintained on the virtual page, all virtual
pages invol-ved in a synonym must be read-only.

7.2. I/0 Considerations

The Berkeley Ownership protocol prevents cache coherency problems between processors.
However, the NuBus I/0 devices do not participate in the cache coherency protocol. Therefore,
I/0 buffers and virtual memory pages must be flushed from all the caches before I/0 is initiated.
If the caches are not flushed, then stale data may be written to secondary storage, or newly read
data may be overwritten by a dirty cache block. The virtual memory page, or page containing the
I/0 buffer, should also be marked invalid or non-cache able to prevent a processor from bringing a
block into its cache.

Flushing a single page from all the caches can be done in two ways. The first is to interrupt
all the other processors and request that they flush the page from their caches. An interrupt level
could be dedicated to this function; the interrupt handler would read the virtual page number from
a communication region in the system segment. As each processor finishes, it updates a table in
the communication region. The initiating processor waits until all other processors have

38

completed before resuming execution.

The second way to flush a page is to take advantage of the cache coherency protocol and
purge the other caches by obtaining an exclusive copy of each block in the page. The blocks can
then be flushed back to memory using the FLUSH operation.

Pseudo-code for this algorithm is presented in Figure 7 .1. The page must be marked invalid
(by clearing PTEPageValid) to prevent other processors from accessing the page during the flush.
The blocks from the page can be brought into the local processor's cache using the ld_32_ri
instruction; this instruction ignores the valid bit in the PTE, and obtains an exclusive copy of the
cache block. The block can then be flushed back to memory using the FLUSH operation (see
Section 5). The process should not be rescheduled to another processor while this code is being
executed.

#define BLOCKSIZE 32
#define PAGESIZE 4096

I* page_ addr contains virtual address of page *I
VmClearValidBit(page_addr); /*Mark page invalid*/
for (p = page_addr; p < page_addr+PAGESIZE; p = p + BLOCKSIZE) {

ReadAnyways(p); /*Fetch block with ld_32_ri */
FlushBlock(p); /* Flush from cache */

}

Figure 7.1: Selective Cache Flush Pseudo-Code

7.3. Modifying Pagetable Entries

Operating system writers are familiar with taking special actions when changing pagetable
entries. In most systems, a translation buffer caches copies of the PTEs to improve performance;
the operating system must invalidate (at least) one entry to guarantee the pagetable update is seen
immediately.

In a virtual address cache, like SPUR's, some of the PTE information is cached with each
block. Thus to propagate a pagetable update, each block from the affected page must be flushed
from the caches. This operation is fairly expensive, so the operating system should try to reduce
its frequency.

In the remainder of this subsection, we discuss changing each of the pagetable entry fields
in tum. A selective cache flush refers to flushing all the blocks from a particular page from all the

caches.

7 .3.1. PTEPagePhysicaiAddress and PTEPage Valid

Clearing the PTEPage Valid bit prevents a processor from bringing a block from that page
into its cache (except as noted below). Processors can still access blocks that are already in their
cache. A selective cache flush is required to prevent further access to the page.

39

The ld_32_ri instruction ignores the PfEPageValid bit. This instruction is useful because
it allows the kernel to "steal" blocks from other caches during a selective cache flush. On the
other hand, it is extremely dangerous. If the page is truly invalid, i.e., PfEPagePhysicalAddress
is garbage, executing ld _ 32 _ri can cause a bus error or bus timeout error. Since errors can cause
system failures, the operating system must be very careful when using this instruction.

Before changing the mapping of a virtual page (i.e., changing PfEPagePhysicalAddress),
the page should first be flushed from the caches. This prevents a processor from accidentally
reading a block from the old physical page that has remained in the cache.

Similarly, before allocating a physical page, all blocks from the previous mapping should
be flushed from the caches. Otherwise main memory could be overwritten by old data, because
each cache block contains its corresponding physical address. A block replacement or cache
flush could overwrite memory despite the change to the mapping (in the PrE).

7 .3.2. PTEPageProtection

When a block is brought into the cache, the PfEPageProtection field is copied into the
cache line. It is this cached copy that is checked by the hardware, not the PrE copy. Thus
changes to PfEPageProtection do not affect previously cached blocks; a selective cache flush is
required to propagate the update.

Sometimes the cache flush can be deferred, or even eliminated. For example, when the pro­
tection is relaxed, as from read-only to read-write, deferring the flush may result in some false
protection violations, but the trap handler can easily detect these cases and resume normal execu­
tion (after flushing the offending cache block to refresh its protection field). If these false traps
are infrequent, then this approach will have less overhead.

7 .3.3. PTEPageCacheable

Switching a page from non-cacheable to cacheable does not requires any action, since no
blocks from the page should be in the caches. Clearing PfEPageCacheable, on the other hand,
only prevents new blocks from being brought into the caches; a selective cache flush is necessary
to remove blocks that are already cached. To guarantee a consistent view of the page, the cache
flush and marking the page non-cacheable should be an atomic action. This is possible by mark­
ing the page invalid during the cache flush, then simultaneously marking the page valid and non­
cacheable.

7 .3.4. PTEPageReferenced

As discussed in Section 2.3.2, PfEPageReferenced is provided to approximate a ''least­
recently-used" replacement policy. The hardware checks this bit only when a block is brought
into the cache. To obtain "true" reference bit behavior, the operating system must perform a
selective cache flush after clearing PfEPageReferenced; this will guarantee that the next refer­

ence to the page will cause a Reference fault.

We suggest a lower overhead alternative, called the miss-bit approximation. In this approx­
imation, the operating system just clears PfEPageReferenced and does not flush the cache.
Assuming that frequently referenced pages are more likely to have cache misses, this approxima­
tion should achieve comparable results with less overhead.

40

7 .3.5. PTEPageDirty

As discussed in Section 2.3.2, PTEPageDirty indicates whether the page has been modified.

The trap handler sets this bit before the page is actually modified. When writing the page to

secondary storage, it is important to prevent a write by a different processor from occurring

between the I/0 transfer and clearing the PTEPageDirty bit. This is easily done by making the

page invalid or read-only before flushing it out of the cache. Note that the page must be flushed

to memory anyways to maintain coherency.

7.4. Re-using Segments

As described previously, each process has access to 4 segments at a time. Generally, all

processes will share the same system segment, and many will share code and perhaps data seg­

ments. Nonetheless, there are only 256 segments in the system and they are clearly a limited

resource.

Before a segment is re-allocated, the system must guarantee that no data from the previous

use of the segment resides in any of the caches. In other words, we are deallocating the pages

previously mapped to the segment and must flush the caches to prevent false hits. Because there

may be many pages involved, we may want to perform a system-wide full cache flush, rather than

selective flushes of individual pages.

A system-wide cache flush could be initiated by interrupting all processors, and having their
interrupt handlers begin execution of the cache flush routine. The initiating processor waits until

all flushes have completed, then marks the segment as clean. Multiple segments can be recycled
simultaneously, which will help amortize the cost of the flushes.

Another algorithm is to have each processor flush ONLY blocks from the specified seg­

ment. Using the physical address space, we can read the virtual address tag for each line in the
cache, and flush it only if the block is in the specified segment. Pseudo-code for this algorithm is

presented in Figure 7.2. Note that because this code uses the physical address space, it can only

be executed in kernel mode.

#define BLOCKSIZE
#define CACHESIZE
#define SEGMASK

32
131072
OxFFOOOOOO

!* flush _seg contains segment number to flush, in high-order 8 bits */
for (i = 0; i < CACHESIZE; i = i + BLOCKSIZE) {

if (ReadVirtualTag(i) & SEGMASK == flush_seg) {
FlushBlock(i); /* Flush from cache */

}
}

Figure 7.2: Segment Cache Flush Pseudo-Code

41

8. References

[Egge88]

[Gibs85]

[Hill86]

[Kate83]

[Katz85]

[Sega84]

[Sign83]

[Tayl88]

[Texa83]

[Wood86]

Eggers, S. J., "Simulation Analysis of Data Sharing Support in Shared Memory
Multiprocessors", Ph.D. thesis, in progress, University of California, Berkeley, completion,
1988.

Gibson, G., "SPURBUS Specification", Proc. ofCS292i: Implementation ofVLSI Systems, R.
H. Katz (editor), University of California. Berkeley, September 1985.

Hill, M.D., S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G. A. Gibson, P.M.
Hansen, J. Keller, S. I. Kong, C. G. Lee, D. Lee, J. M. Pendleton, S. A. Ritchie, D. A. Wood,
B. G. Zorn, P. N. Hilfinger, D. Hodges, R. H. Katz, J. Ousterhout and D. A. Patterson, "SPUR:
A VLSI Multiprocessor Workstation", Computer, Vol. 19, No. 11 , November 1986, pp. 8-22.

Katevenis, M. G. H., "Reduced Instruction Set Computer Architectures for VLSI", UC
Berkeley, Technical Report No. UCB/Computer Science Dpt 83/141, October 1983. Ph.D.
Dissertation.

Katz, R. H., S. J. Eggers, D. A. Wood, C. L. Perkins and R. G. Sheldon, "Implementing a
Cache Consistency Protocol", Proc. 12th International Symposium on Computer Architecture,
Boston, Mass. , pp. 276-283, June 1985.

Segall, Z. and L. Rudolph, "Dynamic Decentralized Cache Schemes for an MIMD Parallel
Processor", Proceedings of the 11th International Symposium on Computer Architecture, Vol.
12, No.3, June 1984, pp. 340-347.

Signetics, Signetics DUART SCN68681 (January 1983).

Taylor, G. S., "An Analysis of a RISC for Lisp", Ph.D. Dissertation, University of California.
Berkeley, in preparation, 1988.

Texas Instruments, NuMachine NuBus Specification, part number TI-2242825-000l (1983).

Wood, D. A., S. J. Eggers, G. Gibson, M.D. Hill, J. Pendleton, S. A. Ritchie, R. H. Katz and
D. A. Patterson, ''An In-Cache Address Translation Mechanism'', Proc. Thirteenth
International Symposium on Computer Architecture, Tokyo, Japan, pp. 358-365, June 1986.

42

